
nanO₂® Third-Party Emissions Validation

Objective

Reduce greenhouse gas (GHGs) emissions from a diesel power generation system used to power drilling operations in South Texas and validate using thirdparty real-time emissions monitoring equipment.

Solution and Testing Procedure

Deploy $nanO_2$ fuel enhancer in a drilling rig's diesel fuel supply and monitor the CO_2 emissions from Generator #4 before and during $nanO_2$ use. Testing was performed during similar lateral drilling operations and more than 24 hours of high-resolution test data was collected for both stages.

Over both testing periods, the graph above plots electrical kilowatts (ekW) versus CO_2 % vapor density (vd). The nan O_2 trend line is lower in the CO_2 throughout the whole load range recorded during the test. This verifies that the rig produces a lower percentage of CO_2 for every given ekW power consumption, implying an overall reduction in CO_2 emissions for any given level of work performed.

Conclusion

The nanO₂ fuel enhancer was successful in lowering the total GHGs from drilling operations. Furthermore, given the proportionate relationship between CO_2 emission and fuel consumption, an equal reduction in fuel consumption can be assumed. The resulting reduction in fuel usage can give a monetary gain, lowering operational costs while meeting emissions targets.

Value Proposition - Manual Dosing

Diesel Cost Per Gallon	\$		3.00
Est Fuel Savings		6.72%	
Est Average Gallons Saved per day - Drilling		148	
t Gallons Saved Per Tote 14,840			
Estimated ROI		98%	

Case Study Details

Location: South Texas

Test Dates:

- Baseline : June 7th, 2022
- nanO₂: January 27th, 2023

Test KPI: CO₂ % vd

Rig Spec: Land Rig

Power Generation: (4) CAT 3512

Results Overview

Reduction in CO₂ Emissions

kW	BL	nanO2	% Reduction
KVV	% vd CO ₂	% vd CO ₂	in CO ₂
150	4.76	4.43	6.83%
200	5.25	4.89	6.79%
250	5.66	5.28	6.77%
300	6.02	5.62	6.74%
350	6.35	5.92	6.73%
400	6.64	6.20	6.71%
450	6.91	6.45	6.69%
500	7.16	6.69	6.68%
550	7.40	6.91	6.67%
600	7.62	7.11	6.66%
650	7.83	7.31	6.65%
Avg	6.51	6.07	6.72%

Sources: Emissions Testing Provided by 3rd party, Alliance Technical Group, & analysis performed by Canrig Drilling Technology

